

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

T850(E)(N21)T NOVEMBER EXAMINATION

NATIONAL CERTIFICATE

MATHEMATICS N1

(16030121)

21 November 2016 (X-Paper) 09:00–12:00

REQUIREMENTS: Graph paper

Scientific calculators may be used.

This question paper consists of 6 pages and a formula sheet of 2 pages.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE MATHEMATICS N1 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Write neatly and legibly.

QUESTION 1

1.1 Given: $7x^{-2} - 5x + 4$

Use the above equation to complete the following sentences:

1.1.1	The expression has terms.		
1.1.2	is the highest exponent of x .		
1.1.3	is the variable.		
1.1.4	is the coefficient of x^{-2}		
1.1.5	4 is the term	(5×1)	(5)
Given: log	$g_3 243 = 5$	(3 × 1)	(3)
Answer the	e following questions using the above expression:		
1.2.1	is the number.		(1)
1.2.2	is the base.		(1)
1.2.3	is the logarithm.		(1)
Write the e	expression in QUESTION 1.2 in exponential form.		(2) [10]

QUESTION 2

1.2

1.3

2.1 Simplify the following by making use only of exponential laws.

2.1.1

$$-6(a^{0}b^{2})^{3} \times \sqrt[5]{\frac{32b^{15}}{b^{5}}}$$
(4)
2.1.2

$$\left[(1)^{3}\right]^{-2}$$

$$\left\lfloor \left(\frac{1}{3}\right) \right\rfloor \tag{3}$$

2.2 Remove the brackets and simplify:

2(x-y) - [2x+2(x-y)](3)

-4-

[18]

2.3 Simplify the following logarithms without the use of a calculator:

$$8\log_e \sqrt{e} + \log_2 16 - (\log_{10} 25 + \log_{10} 4) \tag{4}$$

2.4 Use logarithms with base 10 to determine the value of x. Show ALL the calculations.

$$x = \frac{0.38 \times \sqrt{0.47}}{0.55} \tag{4}$$

QUESTION 3

-		
3.1	Divide $x^3 + x - 5$ by $x - 2$	(7)
3.2	Subtract $47bc - 68pd + 94qr$ from $87pd - 64bc - 70qr$	(3)
3.3	Fully factorise the following expressions:	
	$3.3.1 \qquad 24x^3y^4z^2 - 16x^2y^3z - 8xy^2$	(4)
	3.3.2 $x^3 - xy - 2x^2 + 2y$	(5)
3.4	Given: $36x^6y^3z^2$; $70x^2y^2z$ and $20x^4yz^3$	
	By making use of prime factors, determine the following:	
	3.4.1 The LCM	
	3.4.2 The HCF	(7) [26]
QUEST	TION 4	
4.1	Solve for <i>x</i> .	
	-4(x-3) - 5 = 3(x-7)	(5)
4.2	Manipulate the formula to make p the subject of the formula if	

$$T = 2\pi \sqrt{\frac{p}{g}} \tag{4}$$

4.3 A certain number increased by 18 is three times the original number diminished (decreased) by 8.

Find the number.	(3)
	[12]

-5-

QUESTION 5

(2) [9]

6.3 Calculate the value of x in the following triangle:

QUESTION 7

7.1 Simplify the following expressions by making use of the special angles. DO NOT USE A CALCULATOR.

Use the shape above to determine the following:

- 7.2.1Perimeter of triangle ABC(5)7.2.2Area of triangle ABC(4)[15]
 - **TOTAL: 100**

MATHEMATICS N1

FORMULA SHEET

Rectangle: Perimeter = 2(l + b)Area = $l \times b$

Square: Perimeter = 4aArea = a^2

Triangle: Perimeter = a + b + cArea = $\frac{1}{2}b \times h$

Rectangular prism: Volume = $l \times b \times h$

Right triangular prism: Volume = $\frac{1}{2}b \times h \times l$

Cube: Volume = a^3

Right pyramid: Volume = $\frac{1}{3}$ (base area × *h*)

Ellipse:

Area = $\frac{\pi}{4}$ (major axis × minor axis)

Circle: Circumference = πD or $2\pi r$ Area = $\frac{\pi D^2}{4}$ or πr^2

Cylinder: Volume = $\frac{\pi D^2}{4} \times h$ or $\pi r^2 h$

Cone: Volume = $\frac{\pi D^2}{4} \times \frac{h}{3}$ or $\frac{\pi r^2 h}{3}$

Annulus: $A = \pi \left(R^2 - r^2 \right)$

Reghoek: Omtrek = 2(l+b)Area = $l \times b$

Vierkant: Omtrek = 4aArea = a^2

Driehoek: Omtrek = a + b + cArea = $\frac{1}{2}b \times h$

Reghoekige prisma: Volume = $l \times b \times h$

Regte driehoekige prisma: Volume = $\frac{1}{2}b \times h \times l$

Kubus: Volume = a^3

Regte piramide: Volume = $\frac{1}{3}$ (basisarea × *h*)

Ellips: Area = $\frac{\pi}{4}$ (hoofas × neweas)

Sirkel: Omtrek = πD of $2\pi r$ Area = $\frac{\pi D^2}{4}$ of πr^2

Silinder: Volume = $\frac{\pi D^2}{4} \times h$ of $\pi r^2 h$

Keël: Volume = $\frac{\pi D^2}{4} \times \frac{h}{3}$ of $\frac{\pi r^2 h}{3}$ Annulus: $A = \pi (R^2 - r^2)$ -2-

